

Journal of Fluorine Chemistry 84 (1997) 25-28

Preparation of N,N-dialkyl-N'-perfluoroalkanesulfonylformamidines R_fSO₂N=CHNR₂ via Vilsmeier reagents

Guolin Xu, Bin Xu, Chaoyue Qin, Shizheng Zhu *

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 16 October 1996; accepted 27 February 1997

Abstract

Treatment of sodium perfluoroalkanesulfonylamides R_fSO_2NHNa with Vilsmeier reagents $[YCH=^+NR_2]Cl^-$ ($Y \equiv OP(O)Cl_2, OS(O)Cl)$ give the title compounds $R_fSO_2N=CHNR_2$ in good yields. The molecular structure of $I(CF_2)_2O(CF_2)_2SO_2N=CHNMe_2$ is presented. © 1997 Elsevier Science S.A.

Keywords: Vilsmeier reagents; Sodium perfluoroalkanesulfonylamides; N,N-dialkyl-N'-perfluoroalkanesulfonylformamidines

1. Introduction

Vilsmeier reagents are widely used in organic synthesis, especially in the preparation of heterocyclic compounds [1,2]. Recently the Vilsmeier–Haack reaction has been attracting much attention. For example, the formylation or acylation of arenes, heterocyclic compounds, acetophenone oximes has been recently reported [3–6]. As continuation of our interest in the chemical transformation of perfluoroalkanesulfonylamines $R_PSO_2NH_2$ [7–9], we report the reaction of R_PSO_2NHNa with Vilsmeier reagents.

2. Results and discussion

It is well known that a formylation reaction can be easily achieved by the Vilsmeier–Haack reaction, however, treatment of sodium perfluoroalkanesulfonylamides R_pSO_2NHNa **1** with Vilsmeier reagents [YCH=⁺NR₂]Cl⁻ (Y=OP(O)Cl₂, OS(O)Cl) **2** did not give the expected formylated product R_pSO_2NHCHO . In this reaction the formylated products eliminated hydrogen chloride and gave the corresponding *N*,*N*-dialkyl-*N'*-perfluoroalkanesulfonylformamidine, $R_pSO_2N=CHNR_2$, thus:

$$HC(O)NR_{2} + YCl \xrightarrow{5 \circ C} [Y - CH = NR_{2}]Cl^{-1}$$

where $R \equiv CH_3$, C_2H_5 ; $Y \equiv OS(O)Cl$, $OP(O)Cl_2$.

 $2 + R_{f}SO_{2}NHNa \xrightarrow{-YONa}_{r.t., 8 h} [R_{f}SO_{2}NH - CH = NR_{2}]Cl^{-}$ $\xrightarrow{-HCl}{\rightarrow} R_{f}SO_{2}N = CHNR_{2}$

where $R_f \equiv C_4 F_9$, $I(CF_2)_2 O(CF_2)_2$, $H(CF_2)_2 O(CF_2)_2$. The yields, boiling or melting points of products **3** are shown in Table 1.

Products **3a–3c** are colorless solids and easily recrystallized from many organic solvents such as CH₃CN, CH₃COCH₃, tetrahydrofuran etc.; compounds **3d–3f** are high boiling oils. The pure products were obtained by column chromatography or vacuum fractional distillation. It was noticed that compounds **3a–3f** are very stable towards acids and bases, they did not hydrolyze under acidic or basic reaction conditions. For example, when **3b** was stirred for 8 h in 36% HCl solution or in 30% NaOH solution, it was almost quantitatively recovered. However, similar compounds such as $R_fSO_2N=CHAr$, $R_fSO_2N=CHOR$ hydrolyzed to the corresponding $R_fSO_2NH_2$, ArCHO or HCO₂R products when exposed to air. Compound **3a** C₄F₉SO₂N=CHNMe₂ was first prepared by Niederprum et al. [10] by a two-step reaction from C₄F₉SO₂F, thus:

$$C_{4}F_{9}SO_{2}F + (Me_{3}Si)_{2}NH \xrightarrow[autoclave]{}^{200 \ ^{\circ}C} C_{4}F_{9}SO_{2}NHSiMe_{3}$$

$$DMF \longrightarrow C_{4}F_{9}SO_{2}N = CHNMe_{2}$$

^{*} Corresponding author.

^{0022-1139/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved *PII* S 0022-1139 (97) 00030-4

Compounds 3			Melting point (°C) or boiling point (°C (Torr))	Yield (%) ^b				
R	R _f							
Me	C_4F_9	3a ^a	72	81				
Me	$IC_2F_4OC_2F_4$	3b	40	83				
Me	$HC_2F_4OC_2F_4$	3c	60	80				
Et	C_4F_9	3d	138–140 (2)	78				
Et	$IC_2F_4OC_2F_4$	3e	150–152 (2)	75				
Et	$HC_2F_4OC_2F_4$	3f	140–142 (2)	78				

Table 1	
Compounds 3 prepared	

^a**3a** is a known compound: see Ref. [10]. ^bIsolated yields based on R_tSO₂NHNa.

Fig. 1. The molecular structure of 3b.

The first reaction was carried out in an autoclave at $200 \,^{\circ}$ C and the yield was only 20%. The total yield was 12%.

The stability of compounds **3** could be attributed to electron delocalization.

$$\underset{R_{f} \to R_{f} \to S_{f} \to S$$

The X-ray molecular structure analysis of compound **3b** confirmed this point. The bond lengths of N'–C (1.336 Å) and N–C (1.287 Å) are nearly equal (Fig. 1 and Table 2) and both have double bond character.

In conclusion, *N*-perfluoroalkanesulfonylformamidines are conveniently prepared by the Vilsmeier–Haack reaction of perfluoroalkanesulfonylamides R_fSO₂NHNa in good yield. Their chemical properties are now under investigation.

3. Experimental details

Melting and boiling points reported are uncorrected. Solvents were purified and dried before use. ¹H NMR (60 MHz)

and ¹⁹F NMR(54.6 MHz) spectra were recorded on a Varian-360L instrument or Bruker AM-300 spectrometer with TMS and TFA ($\delta_{CFC1_3} = \delta_{TFA} + 76.8$ ppm, and with upfield positive) as an internal and external standard respectively. X-ray structure analysis was performed with a Rigaku/AFC 7R diffractometer. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Low resolution mass spectra were obtained on a Finnigan GC-MS 4021 instrument. Elemental analyses were performed by this institute.

3.1. Preparation of compounds 3

The following general procedure was used for synthesis of compounds **3a–3f**. Phosphorus oxychloride (1.6 g, 10.4 mmol) was added to a 25 ml flask containing DMF (5 ml) at 0–5 °C; after addition this solution was stirred for 1 h. $I(CF_2)_2O(CF_2)_2NHNa$ (4.5 g, 10 mmol) was added and then stirred at room temperature (r.t.) for 7 h. The reaction mixture was washed with NaHCO₃ solution and water, the oil layer was separated and the aqueous layer was extracted with ether (3×10 ml). The organic layer was combined and dried, after removal of the solvent the crude product was obtained. Recrystallization from CH₃CN gave the fine colorless solid **3b** (3.8 g).

Compounds **3a**, **3c**, **3d**, **3e** and **3f** are prepared similarly.

3.1.1. $C_4F_9SO_2N=CHN(CH_3)_2$ 3a

¹H NMR (CDCl₃) δ (ppm): 8.02 (N=CH, s), 3.15 (CH₃, s), 3.25 (CH₃, s). ¹⁹F NMR (CDCl₃) δ (ppm): 3.0 (CF₃, s), 35.8 (SO₂CF₂, t), 43.5 (CF₂, s), 48.4 (CF₂, t). IR (ν_{max} , cm⁻¹): 2980 (w), 1650 (s), 1480 (w), 1420 (s), 1340 (s), 1240–1160 (vs), 1030 (m), 1010 (m), 940 (s), 860 (m), 820 (m), 800 (m), 720 (m). MS (m/e %): 296 (M⁺-H-CHNMe₂, 2.90), 149 (M⁺-SO₂-NCHN-C₂F₄, 32.48), 135 (⁺SO₂N=CHMe₂, 100.00), 71 (⁺N=CHNMe₂, 33.08), 44 (NMe₂⁺, 64.59).

3.1.2. $ICF_2CF_2OCF_2CF_2SO_2N = CHN(CH_3)_2$ **3***b*

¹H NMR (CDCl₃) δ (ppm): 8.10 (N=CH, s), 3.20 (CH₃, s), 3.10 (CH₃, s). ¹⁹F NMR (CDCl₃): -12.5 (ICF₂, s), 4.0 (OCF₂, t), 8.0 (CF₂O, m), 40.6 (SO₂CF₂, s). IR (ν_{max} , cm⁻¹): 2980 (w), 1630 (s), 1420 (s), 1340 (s), 1220–1100

Table 2		
The bond lengths and bo	nd angles	of 3b

Atom	Atom	Distance	Atom	Atom	Distance		
Ι	C(1)	2.122(6)	S	O(1)	1.436(4)		
S	O(2)	1.423(4)	S	N(2)	1.569(4)		
S	C(4)	1.851(5)	F(1)	C(1)	1.337(6)		
F(2)	C(1)	1.336(7)	F(3)	C(2)	1.336(7)		
F(4)	C(2)	1.338(7)	F(5)	C(3)	1.324(7)		
F(6)	C(3)	1.318(7)	F(7)	C(4)	1.344(6)		
F(8)	C(4)	1.341(6)	O(3)	C(2)	1.375(7)		
O(3)	C(3)	1.381(7)	N(1)	C(5)	1.287(7)		
N(1)	C(6)	1.453(8)	N(1)	C(7)	1.460(8)		
N(2)	C(5)	1.336(8)	C(1)	C(2)	1.519(8)		
C(3)	C(4)	1.538(8)					
Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
O(1)	S	O(2)	117.7(3)	O(1)	S	N(2)	115.2(3)
O(1)	S	C(4)	102.9(2)	O(2)	S	N(2)	109.9(3)
O(2)	S	C(4)	105.0(3)	N(2)	S	C(4)	104.4(2)
C(2)	O(3)	C(3)	121.4(4)	C(5)	N(1)	C(6)	121.7(5)
C(5)	N(1)	C(7)	121.0(5)	C(6)	N(1)	C(7)	117.3(5)
S	N(2)	C(5)	117.6(4)	Ι	C(1)	F(1)	109.9(4)
Ι	C(1)	F(2)	109.2(4)	Ι	C(1)	C(2)	114.7(4)
F(1)	C(1)	F(2)	107.4(5)	F(1)	C(1)	C(2)	107.4(5)
F(2)	C(1)	C(2)	108.0(5)	F(3)	C(2)	F(4)	106.7(5)
F(3)	C(2)	O(3)	111.6(5)	F(3)	C(2)	C(1)	109.7(5)
F(4)	C(2)	O(3)	110.5(5)	F(4)	C(2)	C(1)	109.2(5)
0(3)	C(2)	C(1)	109.1(5)	F(5)	C(3)	F(6)	108.4(5)
F(5)	C(3)	O(3)	110.1(5)	F(5)	C(3)	C(4)	109.3(5)
F(6)	C(3)	O(3)	112.2(5)	F(6)	C(3)	C(4)	110.6(5)
O(3)	C(3)	C(4)	106.1(5)	S	C(4)	F(7)	106.8(3)
S	C(4)	F(8)	107.6(4)	S	C(4)	C(3)	117.7(4)
F(7)	C(4)	F(8)	107.8(4)	F(7)	C(4)	C(3)	107.5(5)
F(8)	C(4)	C(3)	108.9(4)	N(1)	C(5)	N(2)	122.7(5)

(vs), 990 (m), 910 (s), 850 (m), 760 (m), 720 (m), 620 (s). MS ($m/e \ \%$): 479 (M⁺H, 0.26), 351 (M⁺-I, 2.52), 177 (ICF₂⁺, 4.12), 135 (⁺SO₂N=CHNMe₂, 100.00), 119 (C₂F₅⁺, 13.49), 91 (⁺SO₂N=CH, 0.59), 71 (⁺N=CHNMe₂, 13.83), 44 (⁺NMe₂, 19.14). Element analysis for C₇H₇F₈N₂O₃SI: required C 17.57, H 1.46, N 5.58, F 31.80%; found C 17.60, H 1.43, N 5.61, F 31.75%.

3.1.3. $HCF_2CF_2OCF_2CF_2SO_2N = CHN(CH_3)_2$ 3c

¹H NMR(CDCl₃) δ (ppm): 8.13 (N=CH, s), 5.63 $(\text{HCF}_2, \text{ t-t}, J_{\text{HF}} = 54.0 \text{ Hz}), 3.23 (\text{CH}_3, \text{s}), 3.10 (\text{CH}_3, \text{s}).$ ¹⁹F NMR (CDCl₃): 4.1 (OCF₂, s), 8.2 (CF₂O, s), 40.5 $(SO_2CF_2, s), 60.3 (HCF_2, d)$. IR (ν_{max}, cm^{-1}) : 3022 (s), 1647 (s), 1437 (s), 1429 (s), 1335 (s), 1285 (s), 1200-1131 (vs), 996 (vs), 860 (s), 752 (s), 698 (s). MS (m/e %): 353 (M⁺H, 15.30), 333 (M⁺-F, 1.43), 269 (M⁺-F- SO_2 . 2.59), 217 $(HC_2F_4OC_2F_4^+)$ 13.6). 135 $(^{+}SO_{2}N=CHNMe_{2}, 100.00), 119 (C_{2}F_{5}^{+}, 21.62), 101$ $(HC_2F_4^+, 8.20), 71 (^+N=CHNMe_2, 16.53), 44 (^+NMe_2, 16.53), 46 (^$ 32.27). Element analysis for C₇H₈F₈N₂O₃S: required C 23.88, H 2.27, N 7.96, F 43.18%; found C 24.35, H 2.23, N 7.92, F 43.41%.

3.1.4. $C_4F_9SO_2N = CHN(CH_2CH_3)_2$ 3d

¹H NMR (CDCl₃) δ (ppm): 8.02 (N=CH, s), 3.00–3.40 (2×CH₂, m), 1.20–0.8 (2×CH₃, m). ¹⁹F NMR (CDCl₃) δ (ppm): 5.0 (CF₃, t), 38.5 (SO₂CF₂, t), 45.8 (CF₂, s), 50.0

 $\begin{array}{l} ({\rm CF}_2,{\rm t}).\,{\rm IR}\;(\nu_{\rm max},{\rm cm}^{-1}){:}\,2980\;({\rm m}),\,1640\;({\rm vs}),\,1440\;({\rm s}),\\ 1360\;({\rm s}),\,1240{-}1110\;({\rm vs}),\,1030\;({\rm m}),\,960\;({\rm s}),\,890\;({\rm m}),\\ 779\;({\rm m}),\,730\;({\rm m}).\,{\rm MS}\;(m/e\;\%){:}\,383\;({\rm M}^+{\rm H},20.56),\,339\;\\ ({\rm M}^+{\rm H}{-}{\rm CH}_3{-}{\rm C}_2{\rm H}_5,\;5.16),\;219\;\;({\rm C}_4{\rm F}_9^+,\;3.93),\;163\;\\ ({}^+{\rm SO}_2{\rm N}{=}{\rm CHNEt}_2,\,100.00),\,99\;({}^+{\rm N}{=}{\rm CHNEt}_2,\,10.53),\,72\;\\ ({}^+{\rm NEt}_2,\;46.03).\;\;{\rm Element}\;\;{\rm analysis}\;\;{\rm for}\;\;{\rm C}_9{\rm H}_{12}{\rm F}_9{\rm N}_2{\rm O}_2{\rm S}{\rm :}\;\\ {\rm required}\;{\rm C}\;28.20,\,{\rm H}\;3.13,\,{\rm N}\;7.31,\,{\rm F}\;44.65\%;\;{\rm found}\;{\rm C}\;28.16,\\ {\rm H}\;2.99,\,{\rm N}\;7.36,\,{\rm F}\;44.68\%. \end{array}$

3.1.5. $ICF_2CF_2OCF_2CF_2SO_2N = CHN(CH_2CH_3)_2$ 3e

¹H NMR (CDCl₃) δ (ppm): 8.00 (N==CH, s), 3.45– 3.35 (2×CH₂, m), 1.35–1.05 (2×CH₃, m). ¹⁹F NMR (CDCl₃): -11.5 (ICF₂, s), 4.5 (OCF₂, t), 8.5 (CF₂O, m), 40.0 (SO₂CF₂, s). IR (ν_{max} , cm⁻¹): 2980 (w), 1630 (s), 1420 (s), 1340 (s), 1220–1100 (vs), 990 (m), 910 (s), 850 (m), 760 (m), 720 (m), 620 (s). MS ($m/e \ \%$): 507 (M⁺H, 2.19), 328 (M⁺-H-ICF₂, 2.45), 227 (IC₂F₄⁺, 31.37), 163 (⁺SO₂N=CHNEt₂, 100.00), 99 (⁺N=CHNEt₂, 8.53), 72 (⁺NEt₂, 5.26). Element analysis for C₉H₁₁F₈N₂O₃SI: required C 21.34, H 1.98, N 5.53, F 30.04%; found C 21.09, H 2.01, N 5.60, F 30.01%.

3.1.6. $HCF_2CF_2OCF_2CF_2SO_2N = CHN(CH_2CH_3)_2$ 3f

¹H NMR (CDCl₃) δ (ppm): 8.10 (N=CH, s), 6.00 (HCF₂, t-t, J_{HF} = 54.0 Hz), 3.55–3.40 (2×CH₂, m), 1.35–1.15 (2×CH₃, m). ¹⁹F NMR (CDCl₃) δ (ppm): 3.8 (OCF₂,

m), 9.4 (CF₂O, m), 40.3 (SCF₂, s), 61.0 (HCF₂, d). IR (ν_{max} , cm⁻¹): 2980 (m), 1628 (vs), 1452 (s), 1351 (s), 1340 (vs), 1285–1180 (vs), 997 (s), 963 (s), 895 (s), 861 (m), 797 (s), 774 (s), 752 (s). MS (m/e %): 381 (M⁺H, 27.23), 337 (M⁺H-CH₃-C₂H₅, 4.17), 163 (⁺SO₂N=CHNEt₂, 100.00), 99 (⁺N=CHNEt₂, 18.99), 72 (⁺NEt₂, 53.24). Element analysis for C₉H₁₂F₈N₂O₃S: required C 28.42, H 3.18, N 7.36%; found C 28.33, H 3.08, N 7.22%.

3.2. Hydrolysis of 3b

A solution of **3b** (0.48 g, 1 mmol), NaOH (1.5 g), and water (5 ml) was stirred at room temperature for 8 h; ether (10 ml) was added and the ether layer was separated. The aqueous layer was extracted with ether (3×10 ml), the ether layer was combined and the solvent dried; **3b** (0.45 g) was recovered. A similar treatment of **3b** with HCl (36%) was carried out. It was also quantitatively recovered.

3.3. Crystal structure analysis

C₇H₇O₃F₈N₂IS: M = 478.10, monoclinic, space group C2/ c, a = 20.962(9), b = 14.125(3), c = 10.717(2) Å, $\beta = 110.47(2)^{\circ}$, V = 2972 Å³, Z = 8, $D_c = 2.136$ g cm⁻³. Absorption coefficient 0.324 mm⁻¹, F(000) = 1842. Radiation, Mo K α ($\lambda = 0.710689$ Å). Crystal dimensions, $0.2 \times 0.2 \times 0.3$ mm³. Intensity data were collected at 20 °C with a Rigaku/AFC 7R diffractometer using graphite-monochromated Mo K α radiation. A total of 2812 independent reflections was measured in the range 3° < 2 θ < 50° with 0 < h < 9, -13 < k < 13, -14 < l < 14. The structure was solved via a direct method using a Siemens system. The positions for all H atoms were obtained by theoretical calculations. All positional parameters and anisotropic thermal parameters for non-H atoms were refined by means of a fullmatrix least squares technique. The final *R* and R_w values were 0.039 and 0.054 respectively, for 2732 observed reflections ($F > 4\sigma(F)$). All calculations were performed on a MICRO VAXII computer with SHELX86 and ORTEP programs.

Acknowledgements

The authors thank the National Natural Science Foundation of China (NNSFC) (No. 29632003 and No. 29672041) for financial support.

References

- R.M. Acheson, An Introduction to the Chemistry of Heterocyclic Compounds, 3rd edn., Wiley, New York, 1976.
- [2] G.A. Olah, L. Ohannesian, M. Arranahaghi, Chem. Rev. 87 (1987) 671.
- [3] A. Kawada, S. Mitamura, S. Kobayashi, J. Chem. Soc. Chem. Commun. (1993) 1157.
- [4] S.V. Pansara, R.G. Ravi, Synth. Lett. (1994) 823.
- [5] R.A. Pawar, P.B. Bajare, S.B. Mundade, J. Indian Chem. Soc. 67 (1990) 685.
- [6] I.M. Downie, M.J. Earl, H. Heaney, K.F. Shuhaibar, Tetrahedron 49 (1993) 4015.
- [7] S.Z. Zhu, J. Chem. Soc. Chem. Commun. (1991) 732.
- [8] S.Z. Zhu, A.W. Li, B. Xu, J. Fluorine Chem. 69 (1994) 257.
- [9] S.Z. Zhu, A.W. Li, Y.H. Zhu, J. Fluorine Chem. 60 (1993) 283.
- [10] H. Niederprum, P. Voss, V. Beyl, Liebigs. Ann. Chem. 767 (1973) 20.